Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension.
نویسندگان
چکیده
Oxidative stress modulates angiotensin (Ang) II type 1 receptor (AT(1)R) expression and function. Ang II activates renal Na(+)/H(+) exchanger 3 (NHE3) to increase sodium reabsorption, but the mechanisms are still elusive. In addition, the upregulation of AT(1)R during oxidative stress could promote sodium retention and lead to an increase in blood pressure. Herein, we investigated the mechanism of Ang II-mediated, AT(1)R-dependent renal NHE3 regulation and effect of oxidative stress on AT(1)R signaling and development of hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mmol/L of l-buthionine-sulfoximine, an oxidant, with and without 1 mmol/L of Tempol, an antioxidant, for 3 weeks. l-Buthionine-sulfoximine-treated rats exhibited oxidative stress and high blood pressure. Incubation of renal proximal tubules with Ang II caused significantly higher NHE3 activation in l-buthionine-sulfoximine-treated rats compared with control. The activation of NHE3 was sensitive to AT(1)R blocker and inhibitors of phospholipase C, tyrosine kinase, janus kinase 2 (Jak2), Ca(2+)-dependent calmodulin (CaM), and Ca(2+) chelator. Also, incubation of proximal tubules with Ang II caused Jak2-dependent CaM phosphorylation, which led to Jak2-CaM complex formation and increased Jak2-CaM interaction with NHE3. The activation of these signaling molecules was exaggerated in l-buthionine-sulfoximine-treated rats, whereas Tempol normalized the AT(1)R signaling. In conclusion, Ang II activates renal proximal tubular NHE3 through novel pathways that involve phospholipase C and an increase in intracellular Ca(2+), Jak2, and CaM. In addition, oxidative stress exaggerates Ang II signaling, which leads to overstimulation of renal NHE3 and contributes to an increase in blood pressure.
منابع مشابه
Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension.
Reactive oxygen species have emerged as important molecules in cardiovascular dysfunction such as diabetes and hypertension. Recent work has shown that oxidative stress and angiotensin II signaling mutually regulate each other by multiple mechanisms and contribute to the development of hypertension. Most of the known biological actions of angiotensin II can be attributed to AT1 receptors. The p...
متن کاملLoss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling.
Oxidative stress causes changes in angiotensin (Ang) type 1 receptor (AT1R) function, which contributes to hypertension. Ang II affects blood pressure via maintenance of sodium homeostasis by regulating renal Na(+) absorption through its effects on Na/K-ATPase (NKA). At low concentrations, Ang II stimulates NKA; higher concentrations inhibit the enzyme. We examined the effect of oxidative stres...
متن کاملAntioxidant resveratrol restores renal sodium transport regulation in SHR.
Previously we have shown that in spontaneously hypertensive rats (SHR) renal angiotensin (Ang) II receptor (AT1R) upregulation leads to overstimulation of Na/K-ATPase by Ang II. There are reports that antioxidants can reduce oxidative stress and blood pressure (BP) in SHR, however the effect of these compounds on AT1R function remains to be determined. Therefore, we hypothesized that polyphenol...
متن کاملH2O2 stimulation of the Cl-/HCO3- exchanger by angiotensin II and angiotensin II type 1 receptor distribution in membrane microdomains.
The present study tested the hypothesis that angiotensin II (Ang II)-induced oxidative stress and Ang II-stimulated Cl(-)/HCO(3)(-) exchanger are increased and related to the differential membrane Ang II type 1 (AT(1)) receptor and reduced nicotinamide-adenine dinucleotide phosphate oxidase expression in immortalized renal proximal tubular epithelial (PTE) cells from the spontaneously hypertens...
متن کاملRole of aberrant iron homeostasis in the upregulation of transforming growth factor-beta1 in the kidney of angiotensin II-induced hypertensive rats.
We have previously shown that abnormal iron metabolism might be one underlying mechanism of the renal damage observed in the angiotensin II-infused rat. Transforming growth factor-beta1 (TGF-beta1) is known to play a crucial role in the development of renal damage induced by activation of the renin-angiotensin-aldosterone system. The purpose of the present study was to examine the effects of an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2011